
Fuel Cell Technology at MAHLE

IAA Transportation 2022

Fuel Cell System Approach

2 |

Development Competences

Project House Fuel Cell

Interlinked disciplines of development

Our development teams cover the full bandwidth of required disciplines from early concept to the final optimization

System Engineering and SimulationFull functional system simulation	Concept, Design and Thermal Simulation of Electronics	Full Air path CFD Analysis and optimization	Flow field & performance optimization on module level
 (digital twin) Full system architecture, design and optimization 	 State of the art HW design tools with circuit verification and design rule checks State of the art simulation tools for electrical, magnetic, thermal an mechanical simulation Rapid prototyping environment for design verification (MABX, P-HiL, S-HiL) 	 Advanced aero- and thermodynamic simulation (pressure drops, flow field analysis) Water Separation: detailed simulation facilitate geometry optimization to achieve best water separation efficiency 	 Advanced aero- and thermodynamic simulation Airflow evaluation and/or validation including heat rejection calculation for each heat exchanger Advanced aeroacoustics simulation (for modules) Geometry optimization of ducts and supporting geometry
Image: Sector			

MAHLE testbench for Fuel Cell Stacks and BOP components.

- up to 250kW
- highest safety standards
- media conditioning
- seamless hydrogen supply

MAHLE Fuel Cell Components

Fuel Cell Air Management

Air Path System

The integrated cathode module provides the full air conditioning

The sub module contains the following products

- Charge Air Cooler
- Humidifier
- Water Separation
- Air Flap Valves

The first available unit is designed for a module of about 120kW. Further variants will follow.

Prototypes available from Q4/2022

Fuel Cell Air Management Charge Air Cooler

Compact heat exchanger to reduce compressed air temperature

- Scalable design ensures perfect fit from LV to HD application.
- Mature product based on technology already proven on light vehicle fuel cell applications
- Cost efficient design thanks to synergies with high volume charge air cooler applications
- Patented passivation process to meet stringent fuel cell conductivity requirements
- Parts available, full validation for HD applications in 2021

Fuel Cell Air Management

Flat Membrane Humidifier

Humidifier with flat membranes for high performance and extended durability

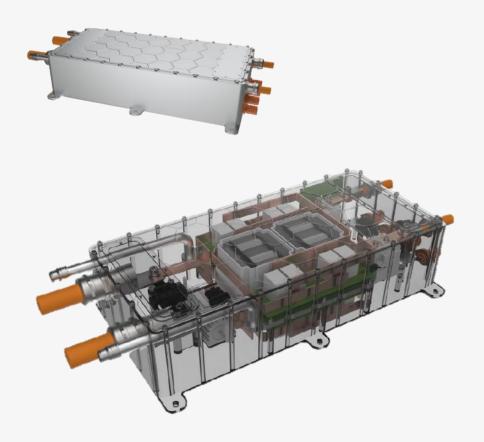
- Using the humidity of the exhaust gas to protect the fuel cell stack from dry-out
- Stack of flat semi-permeable membranes
- Plastic housing with integrated functions (e.g. charge air cooler)
- Small package and low cost due to flat membrane concept
- Improved robustness compared to hollow fibers
- High temperature range (90...120 °C)
- Higher humidification efficiency

Fuel Cell Air Management

Air Filter

Harmful gas absorption (NO_{χ} SO₂ NH₃ H₂S HC)

- High fractional filtration efficiencies for dust, soot and salt
- 'Off-the-shelf' solutions for stack size from 25 kW to 375 kW
- Filter housing in high volume production
- Protection and lifetime extension of the fuel cell stack
- High particle separation efficiency of > 99.9%
- Up to 45 g SO2, 40 g NH3 and 16 g NOX adsorption capacity
- Robust product concept by using proven filtration materials
- Service lifetime of 40.000km and above.



Fuel Cell Converter

The fuel cell converter ensures a constant voltage level towards the vehicle HV net up to 180 kW

- 180 kW non galvanic isolated DC/DC-Converter
- Boost operation (Buck optional)
- Input current control with input and output voltage limitation
- Input voltage range: 50 515 V
- Output voltage range: 520 850 V
- Max. input current 600 A (scalable in 200A steps)
- SiC MOSFET semiconductors for a high system efficiency >97 %
- Integration of additional components possible, e.g. contactors, ...
- High power density of 6.5 kW/I
- ASIL-capable µC to ensure functional Safety accoring ISO 26262
- Low input ripple due to multiphase design
- Power electronics functionality proven on testbench
- First prototypes for customer testing in Q1/2022

Thermal Management

Coolant Pump High Voltage

A coolant pump for medium and heavy duty vehicle applications

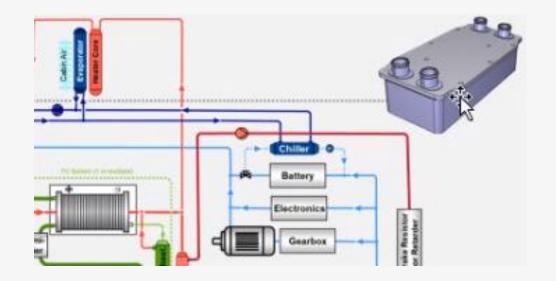
- Voltage range up to 850V, Electric Power 1,0 2,5 kW
- Volume flow 300 l/min @ 2.5 bar delta pressure
- Lifetime 40.000 h / 1.2mil km mileage
- Low ion emission materials
- Sensorless control algorithm
- ASIL B level on rpm (medium flow)
- CAN J1939 (optional LIN)
- Diagnostic functions / fault detection capability
- Functional samples from Q3/22
- SOP 2026

Thermal Management

Coolant Pump Low Voltage

A coolant pump for medium and heavy duty vehicle applications

- Modular design (12V / 24V / 48V) with wet runner concept
- Flow of 7 lpm to 250 lpm (by-pass possible)
- Up to 650 / 850 / 1200W el. and 6250 rpm
- Fluid: Ethylene Glycol
- Pump Efficiency > 50% across wide working point range
- Temperature Fluid: -40 to +115°C Ambient: -40 to +100°C
- Noise <80 dB (A)
- Lifetime >45k hours
- Pump Weight <2,5kg</p>
- Communication Protocol: LIN, PWM and CAN
- SOP: Q4/2023


Coolant-to-Coolant Heat Exchanger

Description

- High performance coolant to coolant heat exchanger for Fuel Cell circuit
- Enables separation of Fuel Cell (high cleanliness requirement) from the rest of the cooling circuit
- Extended portfolio to fit to Fuel Cell cooling requirements: big plate for Stack indirect cooling, medium plate for brake resistor and retarder cooling

Benefits

- Reduced need for passivation of components of the cooling circuit
- Improved fuel cell protection
- Enable cooling synergies on HT-Loop

Related Vehicle Components

Cooling Module

Complete cooling modules will provide thermal stability to FC Systems up to heavy duty sizes

- High maturity level through use of ICE-proven design and components
- Easy to integrate into existing vehicle architecture
- 3 Layer Cooling Module to cool fuel cell stack, E-Powertrain and brake retarder
- Based on existing series components
- Fuel Cell radiator passivated to achieve coolant conductivity requirements
- Specific application for FCEV

Electrical Fans

Description

- 5...10...15kW E-fan Family
- 800V Fan drive with integrated inverter
- Can be arranged in single fan or dual fan configuration -> up to 30kW

Benefits

- High performance
- Compact packaging with integrated inverter

Milestones (10kW motor)

- First customer samples: Q1-2022
- First SOP: Q1-2024

