H₂ ICE Competences

IAA Transportation 2022

H₂ ICE System Approach

MAHLE components

Light Duty Vehicle H₂ ICE activities

MAHLE competences

- MAHLE competences applied to dedicated PCU, valve train components and crank case ventilation for DI H₂-ICE
 - Engine demonstrator (I4, 2.0I)
 - Engine for a PHEV vehicle demonstrator (I3, 1.0I)
- 500 h endurance testing
- Piston / valve temperature measurement carried out
 - Piston temperatures slightly lower than in gasoline operation
 - Intake and exhaust valve below thermal limit

Measuring points (9 <u>Templugs</u> / piston)			Piston 1	Piston 2	Piston 3	Piston 4	Templug
Piston crown	Centre		1	10	19	28	М 3
Bowl rim	FS	0 °	2	11	20	29	M 3
	RS	180°	3	12	21	30	M 3
1 st Ring groove	FS	0°	4	13	22	31	M 3
	ATS	90°	5	14	23	32	M 3
	RS	180°	6	15	24	33	M 3
	TS	270°	7	16	25	34	M 3
Pin boss	FS	0 °	8	17	26	35	M 3
	RS	180°	9	18	27	36	M 3

MAHLE H₂ ICE system knowhow will support to decarbonize cost sensitive (TCO approach), high range and high payload LDV applications

Benefits

- Material and coating solutions based on MAHLE's experience with gas engines (CNG and H₂ engine components)
- Realization of an "Zero CO₂engine concept" by enabling conventional engine components for Hydrogen combustion
- Short lead time (approx. 2 years) until SOP

Outlook

Project started to investigate material and tribology fundamentals

Heavy Duty Vehicle H₂ ICE activities

MAHLE competences

- MAHLE competences applied to dedicated PCU, valve train components and crank case ventilation for PFI / DI H₂-ICE
 ~13I H₂-PCU developed
 - $\sim 131 \, \text{m}_2$ -PCO developed
 - MAHLE internal combustion process investigations

MAHLE dedicated H₂ HD aluminum piston (I) & comparison to diesel steel baseline (r)

Benefits

- Material and coating solutions based on MAHLE's experience with gas engines (CNG and H₂ engine components)
- Realization of an "Zero CO₂engine concept" by enabling conventional engine components for Hydrogen combustion
- Short lead time (approx. 3 years) until SOP

Outlook

- Further projects started / planned to
 - investigate material and tribology fundamentals
 - measure piston temperatures, oil and particle emissions
 - test PCU variants
 - investigate NVH and cavitation behaviour

MAHLE H₂ ICE system knowhow will support to decarbonize multiple high-load HD applications

MAHLE solutions and competences for PCU & valve set

Evolutionary development: Optimized components for zero CO₂ combustion technology

Holistic optimization and robustness increase required

Current Activities

- Piston technology with aluminum base material due to lower temperature and PCP expected
- Engine testing to gather further experience and foster possible pre-development activities if needed

LV Experience in Throttled Condition MHD Experience in Slobber Conditions

- Modify top ring from keystone to rectangular
 Temperature, CBU expected
- Adjust the second land volume for better pressure release
 Guarantee top ring stability!
- Second ring with Napier design + drilled gas port
 - Better oil scraping + avoid pressure increase + avoid 2nd ringcollapse
- Increase 3rd land height and volume
 - Better pressure release + minimize oil filling
- 3 piece OCR in case of PN/LOC issues with idle, motoring and lower loads
 - Better axial conformability/sealing

MAHLE H₂ ICE Competences

H₂-ICE: Valve set specification

Valve stem sealing:

- Gas lip design for high LOP according to high boost
- Minimum leakage rate for "zero emission" approach
- High boost levels combined with gaseous fuels impose tribological challenges in valve stem valve guide system
- Strongly contradictory requirements regarding lube oil supply regarding tribology and emissions

Intake and exhaust valve:

- Corrosion resistant materials
- Fully nitrided for improved wear resistance according to gaseous fuel requirements
- No liquid fuel on intake side and no combustion residues on exhaust side aggravate tribological challenges significantly
- Strong condensate formation from EGR (exhaust gas recirculation) as exhaust gas is pure H₂O

Valve seat inserts:

Materials with high wear resistance and good corrosion resistance

A new combination of requirements compared to established fuels regarding tribology & corrosion in front of moderate thermal loads

MAHLE solutions and competences for crank case ventilation system & oil

Crank case ventilation:

- Assure subcritical H₂ concentration in crank case by active purging
- Variable scavenging air flow @ constant crank case pressure
- Avoid accumulation and condensation of humidity to prevent oil dilution

MAHLE High-pressure impactor

Oil:

- Composition of dedicated H₂ oils can differ completely from diesel / gasoline oils (oil dilution, less soot formation, ...)
- MAHLE plans to investigate H₂ specific oils in cooperation with oil suppliers

Evolutionary development: Optimized components for zero CO₂ combustion technology

System approach to meet safety and robustness requirements

MAHLE H₂ ICE Competences

Crankcase Ventilation for H₂ ICE

Challenges

- Unburned hydrogen within the crankcase
 risk of backfire
- High water content of blow-by-gases

 oil dilution
- Residual oil content **O** balancing of oil separation efficiency and water accumulation

Technology

- Description
 - Electrically driven side channel blower with pressure regulated impactor
 - 24 V and 12 V application
 - Up to 120 W @ max flow capacity 400 l/min and 60 mbar pressure creation
 - Integrated electronics and pressure sensor (active OBD check)
 - Independent positioning of drive and oil mist separator
- Benefits
 - Scavenging flow independent from engine operating point
 - High separation efficiency
 - Reliable and robust design

MAHLE High-pressure impactor

High performance in combination of scavenging and cleaning crankcase gases

